A Hierarchical Spherical Radial Quadrature Algorithm for Multilevel GLMMS, GSMMS, and Gene Pathway Analysis

نویسندگان

  • Jacob A. Gagnon
  • JACOB A. GAGNON
  • Rongheng Lin
  • Anna Liu
چکیده

A HIERARCHICAL SPHERICAL RADIAL QUADRATURE ALGORITHM FOR MULTILEVEL GLMMs, GSMMs, and GENE PATHWAY ANALYSIS SEPTEMBER 2010 JACOB A. GAGNON, B.S., MASSACHUSETTS INSTITUTE OF TECHNOLOGY M.S., UNIVERSITY OF MASSACHUSETTS AT AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AT AMHERST Directed by: Professor Anna Liu The first part of my thesis is concerned with estimation for longitudinal data using generalized semi-parametric mixed models and multilevel generalized linear mixed models for a binary response. Likelihood based inferences are hindered by the lack of a closed form representation. Consequently, various integration approaches have been proposed. We propose a spherical radial integration based approach that takes advantage of the hierarchical structure of the data, which we call the 2 SR method. Compared to Pinheiro and Chao’s multilevel Adaptive Gaussian quadrature [37], our proposed method has an improved time complexity with the number of functional evaluations scaling linearly in the number of subjects and in the dimension of random effects per level. Simulation studies show that our approach has similar to better accuracy compared to Gauss Hermite Quadrature (GHQ) and has better accuracy compared to PQL especially in the variance components.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical quadrature over the surface of a sphere

Large-scale simulations in spherical geometries require associated quadrature formulas. Classical approaches based on tabulated weights are limited to specific quasi-uniform distributions of relatively low numbers of nodes. By using a radial basis function-generated finite differences (RBF-FD) based approach, the proposed algorithm creates quadrature weights for N arbitrarily scattered nodes in...

متن کامل

Generalized Multilevel Structural Equation Modeling

A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent variables. The response model generalizes GLMMs to...

متن کامل

Spherical-Radial Integration Rules for Bayesian Computation

The common numerical problem in Bayesian analysis is the numerical integration of the posterior. In high dimensions, this problem becomes too formidable for xed quadrature methods, and Monte Carlo integration is the usual approach. Through the use of modal standardization and a spherical-radial transformation, we reparameterize in terms of a radius r and point z on the surface of the sphere in ...

متن کامل

Methodological Quality and Reporting of Generalized Linear Mixed Models in Clinical Medicine (2000–2012): A Systematic Review

BACKGROUND Modeling count and binary data collected in hierarchical designs have increased the use of Generalized Linear Mixed Models (GLMMs) in medicine. This article presents a systematic review of the application and quality of results and information reported from GLMMs in the field of clinical medicine. METHODS A search using the Web of Science database was performed for published origin...

متن کامل

Thermo-elastic analysis of a functionally graded thick sphere by differential quadrature method

Thermo-elastic analysis of a functionally graded hollow sphere is carried out and numerical solutions of displacement, stress and thermal fields are obtained using the Polynomial differential quadrature (PDQ) method. Material properties are assumed to be graded in the radial direction according to a power law function, ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014